Dynamic afferent synapses to decision-making networks improve performance in tasks requiring stimulus associations and discriminations.
نویسندگان
چکیده
Animals must often make opposing responses to similar complex stimuli. Multiple sensory inputs from such stimuli combine to produce stimulus-specific patterns of neural activity. It is the differences between these activity patterns, even when small, that provide the basis for any differences in behavioral response. In the present study, we investigate three tasks with differing degrees of overlap in the inputs, each with just two response possibilities. We simulate behavioral output via winner-takes-all activity in one of two pools of neurons forming a biologically based decision-making layer. The decision-making layer receives inputs either in a direct stimulus-dependent manner or via an intervening recurrent network of neurons that form the associative layer, whose activity helps distinguish the stimuli of each task. We show that synaptic facilitation of synapses to the decision-making layer improves performance in these tasks, robustly increasing accuracy and speed of responses across multiple configurations of network inputs. Conversely, we find that synaptic depression worsens performance. In a linearly nonseparable task with exclusive-or logic, the benefit of synaptic facilitation lies in its superlinear transmission: effective synaptic strength increases with presynaptic firing rate, which enhances the already present superlinearity of presynaptic firing rate as a function of stimulus-dependent input. In linearly separable single-stimulus discrimination tasks, we find that facilitating synapses are always beneficial because synaptic facilitation always enhances any differences between inputs. Thus we predict that for optimal decision-making accuracy and speed, synapses from sensory or associative areas to decision-making or premotor areas should be facilitating.
منابع مشابه
Dynamic afferent synapses to decision - making networks improve performance in 2 tasks requiring stimulus associations and discriminations
1 1 Dynamic afferent synapses to decision-making networks improve performance in 2 tasks requiring stimulus associations and discriminations. 3 4 Mark A. Bourjaily and Paul Miller* 5 *Corresponding author Paul Miller 6 7 Author Contributions: MAB and PM conceived, designed and performed the 8 experiments, analyzed the data, and wrote the paper. 9 10 Department of Biology, Neuroscience Program, ...
متن کاملComputational modeling of dynamic decision making using connectionist networks
In this research connectionist modeling of decision making has been presented. Important areas for decision making in the brain are thalamus, prefrontal cortex and Amygdala. Connectionist modeling with 3 parts representative for these 3 areas is made based the result of Iowa Gambling Task. In many researches Iowa Gambling Task is used to study emotional decision making. In these kind of decisio...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملA DSS-Based Dynamic Programming for Finding Optimal Markets Using Neural Networks and Pricing
One of the substantial challenges in marketing efforts is determining optimal markets, specifically in market segmentation. The problem is more controversial in electronic commerce and electronic marketing. Consumer behaviour is influenced by different factors and thus varies in different time periods. These dynamic impacts lead to the uncertain behaviour of consumers and therefore harden the t...
متن کاملDynamic Interactions between Large-Scale Brain Networks Predict Behavioral Adaptation after Perceptual Errors
Failures to perceive visual stimuli lead to errors in decision making. Different theoretical accounts implicate either medial frontal (MF) cognitive control processes or prestimulus occipital (OC) cortical oscillatory dynamics in errors during perceptual tasks. Here, we show that these 2 previously unconnected theoretical accounts can be reconciled, and the brain regions described by the 2 theo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 108 2 شماره
صفحات -
تاریخ انتشار 2012